
Chapter 91

Q-Learning2

Reading
1. Sutton & Barto, Chapter 6, 11

2. Human-level control through deep reinforcement learning
https://www.nature.com/articles/nature14236

3. Deterministic Policy Gradient Algorithms,
http://proceedings.mlr.press/v32/silver14.html

4. Addressing Function Approximation Error in Actor-Critic Methods
https://arxiv.org/abs/1802.09477

5. An Application of Reinforcement Learning to Aerobatic Heli-
copter Flight, https://papers.nips.cc/paper/3151-an-application-of-
reinforcement-learning-to-aerobatic-helicopter-flight

In the previous chapter, we looked at what are called “on-policy” methods,3

these are methods where the current controller uθk is used to draw fresh data4

from the dynamical system and used to update to parameters θk. The key5

inefficiency in on-policy methods is that this data is thrown away in the next6

iteration. We need to draw a fresh set of trajectories from the system for uθk+1 .7

This lecture will discuss off-policy methods which are a way to reuse past data.8

These methods require much fewer data than on-policy methods (in practice,9

about 10–100× less).10

9.1 Tabular Q-Learning11

Recall the value iteration algorithm for discrete (and finite) state and control12

spaces; this is also called “tabular” Q-Learning in the RL literature because we13

can store the Q-function q(x, u) as a large table with number of rows being the14

number of states and number of columns being the number of controls, with15

1

https://www.nature.com/articles/nature14236
http://proceedings.mlr.press/v32/silver14.html
https://arxiv.org/abs/1802.09477
https://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight
https://papers.nips.cc/paper/3151-an-application-of-reinforcement-learning-to-aerobatic-helicopter-flight

2

each entry in this table being the value q(x, u). Value iteration when written16

using the Q-function at the kth iteration for the tabular setting looks like17

q(k+1)(x, u) =
∑
x′∈X

P(x′ | x, u)
(
r(x, u) + γ max

u′
q(k)(x′, u′)

)
= E

x′∼P(·|x,u)

[
r(x, u) + γ max

u′
q(k)(x′, u′)

]
.

In the simplest possible instantiation of Q-learning, the expectation in
the value iteration above (which we can only compute if we know a model
of the dynamics) is replaced by samples drawn from the environment.

We will imagine the robot as using an arbitrary controller18

ue(· | x)

that has a fairly large degree of randomness in how it picks actions. We call19

such a controller an “exploratory controller”. Conceptually, its goal is to lead20

the robot to diverse states in the state-space so that we get a faithful estimate21

of the expectation in value iteration. We maintain the value q(k)(x, u) for all22

states x ∈ X and controls u ∈ U and update these values to get q(k+1) after23

each step of the robot.24

From the results on Bellman iteration, we know that any Q-function that25

satisfies the above equation is the optimal Q-function; we would therefore like26

our Q-function to satisfy27

q∗(xk, uk) ≈ r(xk, uk) + γ max
u′

q∗(xk+1, u
′).

over samples (xk, uk, xk+1) collected as the robot explores the environment.28

Tabular Q-Learning Let us imagine the robot travels for n trajectories
each of T time-steps each. We can now solve for q∗ by minimizing the
objective

min
q

1

n(T + 1)

n∑
i=1

T∑
k=0

∥q(xi
k, u

i
k)− r(xi

k, u
i
k)− γ max

u′∈U
q(xi

k+1, u
′)∥22.

(9.1)
on the data collected by the robot. The variable of optimization here are
all values q∗(x, u) for x ∈ X and u ∈ U .

Notice a few important things about the above optimization problem. First,29

the last term is a maximization over u′ ∈ U , it is maxu′∈U q(xi
k+1, u

′) and30

not q(xi
k+1, u

i
k+1). In practice, you should imagine a robot performing Q-31

Learning in a grid-world setting where it seeks to find the optimal trajectory32

to go from a source location to a target location. If at each step, the robot33

has 4 controls to choose from, computing this last term involves taking the34

maximum of 4 different values (4 columns in the tabular Q-function).35

3

Notice that for finite-horizon dynamic programming we initialized the36

Q-function at the terminal time to a known value (the terminal cost). Similarly,37

for infinite-horizon value iteration, we discussed how we can converge to the38

optimal Q-function with any initialization. In the above case, we do not impose39

any such constraint upon the Q-function, but there is an implicit constraint. All40

values q(x, u) have to be consistent with each other and ideally, the residual41

∥q(xi
k, u

i
k)− r(xi

k, u
i
k)− γ max

u′∈U
q(xi

k+1, u
′)∥22 = 0

for all trajectories i and all timesteps T .42

Solving tabular Q-Learning How should we solve the optimization prob-43

lem in (9.1)? This is easy, every entry q(x, u) for x ∈ U and u ∈ U is a44

variable of this objective and each ∥·∥22 term in the objective simply represents45

a constraint that ties these different values of the Q-function together. We can46

solve for all q(x, u) iteratively as47

q(x, u) ← q(x, u)− η∇q(x,u) ℓ(q)

= (1− η) q(x, u)− η

(
r(x, u) + γ max

u′
q(x′, u′)

) (9.2)

where ℓ(q) is the entire objective 1
n(T+1)

∑
i

∑
k · · · above and (x, u, x′) ≡48

(xi
k, u

i
k, x

i
k+1) in the second equation. An important point to note here is that49

although the robot collects a finite number of data50

D =
{
(xi

k, u
i
k)k=0,1,...,T

}n

i=1

we have an estimate for the value q(x, u) at all states x ∈ X . Intuitively,51

tabular Q-learning looks at the returns obtained by the robot after starting from52

a state x (the reward-to-come J(x)) and patches the returns from nearby states53

x, x′ using the constraints in the objective (9.1).54

Terminal state One must be very careful about the terminal state in such55

implementations of Q-learning. Typically, most research papers imagine that56

they are solving an infinite horizon problem but use simulators that have an57

explicit terminal state, i.e., the simulator does not proceed to the next timestep58

after the robot reaches the goal. A workaround for using such simulators (this59

applies for essentially all simulators) is to modify (9.2) as60

q(x, u) = (1−η) q(x, u)−η
(
r(x, u) + γ

(
1− 1{x′ is terminal}

)
max
u′

q(x′, u′)

)
.

Effectively, we are setting q(x′, u) = 0 for all u ∈ U if x′ is a terminal state61

of problem. This is a very important point to remember and Q-Learning will62

never work if you forget to include the term 1{x′ is terminal} in your expression.63

What is the controller in tabular Q-Learning? The controller in tabular Q-64

Learning is easy to get after we solve (9.1). At test time, we use a deterministic65

4

controller given by66

u∗(x) = argmax
u′

q∗(x, u′).

9.1.1 How to perform exploration in Q-Learning67

The exploratory controller used by the robot ue(· | x) is critical to perform68

Q-Learning well. If the exploratory controller does not explore much, we do69

not get states from all parts of the state-space. This is quite bad, because in this70

case the estimates of Q-function at all states will be bad, not just at the states71

that the robot did not visit. To make this intuitive, imagine if we cordoned off72

some nodes in the graph for the backward version of Dijkstra’s algorithm and73

never used them to update the dist variable. We would never get to the optimal74

cost-to-go for all states in this case because there could be trajectories that75

go through these cordoned off states that lead to a smaller cost-to-go. So it is76

quite important to pick the right exploratory controller.77

It turns out that a random exploratory controller, e.g., a controller ue(· | x)78

that picks controls uniformly randomly is pretty good. We can show that our79

tabular Q-Learning will converge to the optimal Q-function q∗(x, u) as the80

amount of data drawn from the random controller goes to infinity, even if we81

initialize the table to arbitrary values.

 This is again the power of
dynamic programming at work. The
Bellman equation guarantees the
convergence of value iteration
provided we compute the
expectation exactly. But if the robot
does give us lots of data from the
environment, then Q-Learning also
inherits this property of convergence
to the optimal Q-function from any
initialization.

In other words, if we are guaranteed that82

the robot visits each state in the finite MDP infinitely often, it is a classical83

result that updates of the form (9.2) for minimizing the objective in (9.1)84

converge to the optimal Q-function.85

Epsilon-greedy exploration Instead of the robot using a arbitrary controller86

ue(· | x) to gather data, we can use the current estimate of the Q-function87

with some added randomness to ensure that the robot visits all states in the88

state-space. This is a key idea in Q-Learning and is known as “epsilon-greedy”89

exploration. We set90

ue(u | x) =

{
argmaxu q(x, u) with probability 1− ϵ

uniform(U) with probability ϵ.
(9.3)

for some user-chosen value of ϵ. Effectively, the robot repeats the controls it91

took in the past with probability 1− ϵ and uniformly samples from the entire92

control space with probability ϵ. The former ensures that the robot moves93

towards the parts of the state-space where states have a high return-to-come94

(after all, that is the what the Q-function q(x, u) indicates). The latter ensures95

that even if the robot’s estimate of the Q-function is bad, it is still visiting96

every state in the state-space infinitely often.97

A different perspective on Q-Learning Conceptually, we can think of98

tabular Q-learning as happening in two stages. In the first stage, the robot99

gathers a large amount of data100

D =
{
(xi

k, u
i
k)k=0,1,...,T

}n

i=1

using the exploratory controller ue(· | x); let us consider the case when we are101

using an arbitrary exploratory controller, not epsilon-greedy exploration. Using102

5

this data, the robot fits a model for the system, i.e., it learns the underlying103

MDP104

P(x′ | x, u);

this is very similar to the step in the Baum-Welch algorithm that we saw for105

learning the Markov state transition matrix of the HMM in Chapter 2. We106

simply take frequency counts to estimate this probability107

P(x′ | x, u) ≈ 1

N

∑
i

1{x′ was reached from x using control u}

where N is the number of the times the robot took control u at state x. Given108

this transition matrix, we can now perform value iteration on the MDP to learn109

the Q-function110

q(k+1)(x, u) = E
x′∼P(·|x,u)

[
r(x, u) + γ max

u′
q(k)(x′, u)

]
.

The success of this two-stage approach depends upon how accurate our esti-111

mate of P(x′ | x, u) is. This in turn depends on how much the robot explored112

the domain and the size of the dataset it collected, both of these need to be113

large. We can therefore think of Q-learning as interleaving these two stages114

in a single algorithm, it learns the dynamics of the system and the Q-function115

for that dynamics simultaneously. But the Q-Learning algorithm does not116

really maintain a representation of the dynamics, i.e., at the end of running117

Q-Learning, we do not know what P(x′ | x, u) is.118

9.2 Function approximation (Deep Q Networks)119

Tabular methods are really nice but they do not scale to large problems. The120

grid-world in the homework problem on policy iteration had 100 states, a121

typical game of Tetris has about 1060 states. For comparison, the number of122

atoms in the known universe is about 1080. The number of different states123

in a typical Atari game is more than 10300. These are all problems with a124

discrete number of states and controls, for continuous state/control-space, the125

number of distinct states/controls is infinite. So it is essentially impossible to126

run the tabular Q-Learning method from the previous section for most real-127

world problems. In this section, we will look at a powerful set of algorithms128

that parameterize the Q-function using a neural network to work around this129

problem.130

We use the same idea from the previous chapter, that of parameterizing the131

Q-function using a deep network. We will denote132

qφ(x, u) : X × U 7→ R

as the Q-function and our goal is to fit the deep network to obtain the weights φ̂,133

instead of maintaining a very large table of size |X| × |U | for the Q-function.134

Fitting the Q-function is quite similar to the tabular case: given a dataset135

6

D =
{
(xi

t, u
i
t)t=0,1,...,T

}n

i=1
from the system, we want to enforce136

qφ(x
i
t, u

i
t) = r(xi

t, u
i
t) + γ max

u′
qφ(x

i
t+1, u

′)

for all tuples (xi
t, u

i
t, x

i
t+1) in the dataset. Just like the previous section, we137

will solve138

φ̂ = argmin
φ

1

n(T + 1)

n∑
i=1

T∑
t=1

qφ(x
i
t, u

i
t)− r(xi

t, u
i
t)− γ

(
1− 1{xi

t+1 is terminal}
)

max
u′

qφ(x
i
t+1, u

′)︸ ︷︷ ︸
target(x′;φ)

2

≡ argmin
φ

1

n(T + 1)

n∑
i=1

T∑
t=1

(
qφ(x

i
t, u

i
t)− target(xi

t+1;φ)
)2

(9.4)
The last two terms in this expression above are together called the “target”139

because the problem is very similar to least squares regression, except that the140

targets also depend on the weights φ. This is what makes it challenging to141

solve.142

As discussed above, Q-Learning with function approximation is known143

as “Fitted Q Iteration”. Remember that very important point that the robot144

collects data using the exploratory controller ue(· | x) but the Q-function that145

we fit is the optimal Q-function.146

Fitted Q-Iteration with function approximation may not converge to147

the optimal Q-function It turns out that (9.4) has certain mathematical148

intricacies that prevent it from converging to the optimal Q-function. We149

will first give the intuitive reason. In the tabular Q-Learning setting, if we150

modify some entry q(x, u) for an x ∈ X and u ∈ U , the other entires (which151

are tied together using the Bellman equation) are all modified. This is akin152

to you changing the dist value of one node in Dijkstra’s algorithm; the dist153

values of all other nodes will have to change to satisfy the Bellman equation.154

This is what (9.2) achieves if implemented with a decaying step-size η; see155

http://users.isr.ist.utl.pt/∼mtjspaan/readingGroup/ProofQlearning.pdf for the156

proof. This does not hold for (9.4). Even if the objective in (9.4) is zero157

on our collected dataset, i.e., the Q-function fits data collected by the robot158

perfectly, the Q-function may not be the optimal Q-function.

 The mathematical reason behind
this is that the Bellman operator, i.e.,
the update to the Q/value-function is
a contraction for the tabular setting,
this is not the case for Fitted
Q-Iteration unless the function
approximation has some technical
conditions imposed upon it.

An intuitive159

way of understanding this problem is that even if the Bellman error is zero on160

samples in the dataset, the optimization objective says nothing about states161

that are not present in the dataset; the Bellman error on them is completely162

dependent upon the smoothness properties of the function expressed by the163

neural architecture. Contrast this comment with the solution of the HJB164

equation in Chapter 6 where the value function was quite non-smooth at some165

places. If our sampled dataset does not contain those places, there is no way166

the neural network can know the optimal form of the value function.167

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

7

168

9.2.1 Embellishments to Q-Learning169

We next discuss a few practical aspects of implementing Q-Learning. Each of170

the following points is extremely important to understand how to get RL to171

work on real-world problems, so you should internalize these.172

Pick mini-batches from different trajectories in SGD . In practice, we fit173

the Q-function using stochastic gradient descent. At each iteration we sample174

a mini-batch of inputs (xi
t, u

i
t, x

i
t+1) from different trajectories i ∈ {1, . . . , n}175

and update the weights φ in the direction of the negative gradient.176

φk+1 = φk − η∇φ

(
qpk(x, u)− target(x′;φk)

)2
.

The mini-batch is picked to have samples from different trajectories because177

samples from the same trajectory are correlated to each other (after all, the178

robot obtains the next tuple (x′, u′, x
′′
) from the previous tuple (x, u, x′)).179

Replay buffer The dataset D is known as the replay buffer.180

Off-policy learning The replay buffer is typically not fixed during training.181

Instead of drawing data from the exploratory controller ue, we can think of the182

following algorithm. Initialize the Q-function weights to φ0 and the dataset to183

D = ∅. At the kth iteration,184

• Draw a dataset Dk of n trajectories from the ϵ-greedy policy185

ue(u | x) =

{
argmaxu q

k(x, u) with probability 1− ϵ

uniform(U) with probability ϵ.

• Add new trajectories to the dataset186

D ← D ∪Dk.

• Update weights to qk+1 using all past data D using (9.4).187

Compare this algorithm to policy-gradient-based methods which throw away188

the data from the previous iteration. Indeed, when we want to compute189

the gradient ∇θ Eτ∼p
θk

[R(τ)], we should sample trajectories from current190

weights θk, we cannot use trajectories from some old weights. In contrast,191

8

in Q-Learning, we maintain a cumulative dataset D that contains trajectories192

from all the past ϵ-greedy controllers and use it to find new weights of the Q-193

function. We can do so because of the powerful Bellman equation, Q-Iteration194

is learning the optimal value function and no matter what dataset (9.4) is195

evaluated upon, if the error is zero, we are guaranteed that Q-function learned196

is the optimal one. Policy gradients do not use the Bellman equation and that197

is why they are so inefficient. This is also the reason Q-Learning with a replay198

buffer is called “off-policy” learning because it learns the optimal controller199

even if the data that it uses comes from some other non-optimal controller (the200

exploratory controller or the ϵ-greedy controller).201

Using off-policy learning is an old idea, the DQN paper which demon-202

strated very impressive results on Atari games using RL brought it back into203

prominence.204

Setting a good value of ϵ for exploration is critical Towards the beginning205

of training, we want a large value for ϵ to gather diverse data from the envi-206

ronment. As training progresses, we want to reduce ϵ because presumably we207

have a few good control trajectories that result in good returns and can focus208

on searching the neighborhood of these trajectories.209

Prioritized experience replay is an idea where instead of sampling from210

the replay buffer D uniformly randomly when we fit the Q-function in (9.4),211

we only sample data points (xi
t, u

i
t) which have a high Bellman error212

|qφ(xi
t, u

i
t)− r(xi

t, u
i
t)− γ

(
1− 1{xi

t+1 is terminal}
)

max
u′

qφ(x
i
t+1, u

′)|

This is a reasonable idea but is not very useful in practice for two reasons.213

First, if we use deep networks for parameterizing the Q-function, the network214

can fit even very complex datasets so there is no reason to not use the data215

points with low Bellman error in (9.4); the gradient using them will be small216

anyway. Second, there are a lot of hyper-parameters that determine prioritized217

sampling, e.g., the threshold beyond which we consider the Bellman error to be218

high. These hyper-parameters are quite difficult to use in practice and therefore219

it is a good idea to not use prioritized experience replay at the beginning of220

development of your method on a new problem.221

Using robust regression to fit the Q-function There may be states in the222

replay

 Huber loss for δ = 1 (green)
compared to the squared error loss
(blue).buffer with very high Bellman error, e.g., the kinks in the value function223

for the mountain car obtained from HJB above, if we happen to sample224

those. For instance, these are states where the controller “switches” and is225

discontinuous function of state x. In these cases, instead of these few states226

dominating the gradient for the entire dataset, we can use ideas in robust227

regression to reduce their effect on the gradient. A popular way to do so is to228

use a Huber-loss in place of the quadratic loss in (9.4)229

huberδ(a) =

{
a2

2 for |a| ≤ δ

δ
(
|a| − δ

2

)
otherwise.

(9.5)

9

Delayed target Notice that the target also depends upon the weights φ:230

target(x′;φ) := r(x, u) + γ
(
1− 1{x′ is terminal}

)
max
u′

qφ(x
′, u′).

This creates a very big problem when we fit the Q-function. Effectively, both231

the covariate and the target in (9.4) depend upon the weights of the Q-function.232

Minimizing the objective in (9.4) is akin to performing least squares regression233

where the targets keep changing every time you solve for the solution. This234

is the root cause of why Q-Learning is difficult to use in practice. A popular235

hack to get around this problem is to use some old weights to compute the236

target, i.e., use the loss237

1

n(T + 1)

∑
i,t

(
qφk(xi

t, u
i
t)− target(xi

t+1; φ
k′
)
)2

. (9.6)

in place of (9.4). Here k′ is an iterate much older than k, say k′ = k − 100.238

This trick is called “delayed target”.239

Exponential averaging to update the target Notice that in order to im-240

plement delayed targets as discussed above we will have to save all weights241

φk, φk−1, . . . , φk−100, which can be cumbersome. We can however do yet242

another clever hack and initialize two copies of the weights, one for the actual243

Q-function φk and another for the target, let us call it φ′k. We set the target244

equal to the Q-function at initialization. The target copy is updated at each245

iteration to be246

φ′k+1
= (1− α)φ′k + αφk+1 (9.7)

with some small value, say α = 0.05. The target’s weights are therefore an247

exponentially averaged version of the weights of the Q-function.248

Why are delayed targets essential for Q-Learning to work? There are249

many explanations given why delayed targets are essential in practice but the250

correct one is not really known yet.251

1. For example, one reason could be that since qφk(x, u) for a given state252

typically increases as we train for more iterations in Q-Learning, the old253

weights inside a delayed target are an underestimate of the true target.254

This might lead to some stability in situations when the Q-function’s255

weights φk change too quickly when we fit (9.4) or we do not have256

enough data in the replay buffer yet.257

2. Another reason one could hypothesize is related to concepts like self-258

distillation. For example, we may write a new objective for Q-Learning259

that looks like260 (
qφk(xi

t, u
i
t)− target(xi

t+1; φ
k)
)2

+
1

2λ
∥φk − φk′

∥22

where the second term is known as proximal term that prevents the261

weights φk from change too much from their old values φk′
. Proximal262

objectives are more stable versions of the standard quadratic objective263

10

in (9.4) and help in cases when one is solving Q-Learning using SGD264

updates.265

Double Q-Learning Even a delayed target may not be sufficient to get266

Q-Learning to lead to good returns in practice. Focus on one state x. One267

problem arise from the max operator in (9.4). Suppose that the Q-function268

qφk corresponds to a particularly bad controller, say a controller that picks a269

control270

argmax
u

qφk(x, u)

that is very different from the optimal control271

argmax
u

q∗(x, u)

then, even the delayed target qφk′ may be a similarly poor controller. The ideal272

target is of course the return-to-come, or the value of the optimal Q-function273

maxu′ q∗(x′, u′), but we do not know it while fitting the Q-function. The same274

problem also occurs if our Q-function (or its delayed version, the target) is too275

optimistic about the values of certain control inputs, it will consistently pick276

those controls in the max operator. One hack to get around this problem is to277

pick the maximizing control input using the non-delayed Q-function but use278

the value of the delayed target279

targetDDQN(x
i
t+1;φ

′k) = r(x, u) + γ
(
1− 1{xi

t+1 is terminal}
)
qφ′k(xi

t+1, u
′).

(9.8)
where280

u′ = argmax
u

qφk(xi
t+1, u)︸ ︷︷ ︸

control chosen by the Q-function

.

Training two Q-functions We can also train two copies of the Q-function281

simultaneously, each with its own delayed target and mix-and-match their282

targets. Let φ(1)k and φ′(1)k be one Q-function and target pair and φ(2)k and283

φ′(2)k be another pair. We update both of them using the following objective.284

For φ(1) :

(
q(1)

k
(x, u)− r(x, u)− γ

(
1− 1{x′ is terminal}

)
targetDDQN(x

′, φ′(2)k)

)2

For φ(2) :

(
q(2)

k
(x, u)− r(x, u)− γ

(
1− 1{x′ is terminal}

)
targetDDQN(x

′, φ′(1)k)

)2

(9.9)
Sometimes we also use only one target that is the minimum of the two targets285

(this helps because it is more pessimistic estimate of the true target)286

target(x′) := min
{

targetDDQN(x
′, φ′(1)k), targetDDQN(x

′, φ′(2)k)

}
.

You will also see many papers train multiple Q-functions, many more than 2.287

In such cases, it is a good idea to pick the control for evaluation using all the288

11

Q-functions:289

u∗(x) := argmax
u

∑
k

qφ(k)(x, u).

rather than only one of them, as is often done in research papers.290

A remark on the various tricks used to compute the target It may seem291

that a lot of these tricks are about being pessimistic while computing the target.292

This is our current understanding in RL and it is born out of the following ob-293

servation: typically in practice, you will observe that the Q-function estimates294

can become very large. Even if the TD error is small, the values qφ(x, u) can295

be arbitrarily large; see Figure 1 in Continuous Doubly Constrained Batch296

Reinforcement Learning for an example in a slightly different setting. This297

occurs because we pick the control that maximizes the Q-value of a particular298

state x in (9.8). Effectively, if the Q-value qφ(x
′, u) of a particular control299

u ∈ U is an over-estimate, the target will keep selecting this control as the300

maximizing control, which drives up the value of the Q-function at qφ(x, u)301

as well. This problem is a bit more drastic in the next section on continuous-302

valued controls. It is however unclear how to best address this issue and design303

mathematically sound methods that do not use arbitrary heuristics such as304

“pessimism”.

 Mathematically, the fundamental
problem in
function-approximation-based RL is
actually clear: even if the Bellman
operation is a contraction for tabular
RL, it need not be a contraction
when we are approximating the
Q-function using a neural network.
Therefore minimizing TD-error
which works quite well for the
tabular case need not work well in
the function-approximation case.
There may exist other, more robust,
ways of computing the Bellman
fixed point qφ(x, u) =
r(x, u) + maxu′ γ qφ(x

′, u′) other
than minimizing the the squared TD
error but we do not have good
candidates yet.

305

9.3 Q-Learning for continuous control spaces306

All the methods we have looked at in this chapter are for discrete control307

spaces, i.e., the set of controls that the robot can take is a finite set. In this case308

we can easily compute the maximizing control of the Q-function.309

u∗(x) = argmax
u

qφ(x, u).

Certainly a lot of real-world problems have continuous-valued controls and310

we therefore need Q-Learning-based methods to handle this.311

Deterministic policy gradient A natural way, although non-rigorous, to312

think about this is to assume that we are given a Q-function qφ(x, u) (we313

will leave the controller for which this is the Q-function vague for now)314

and a dataset D =
{
(xi

t, u
i
t)

T
t=0

}n

i=1
. We can find a deterministic feedback315

controller that takes controls that lead to good values as316

θ∗ = max
θ

1

n(T + 1)

n∑
i=1

T∑
t=0

qφ(x
i
t, uθ(x

i
t)). (9.10)

Effectively we are fitting a feedback controller that takes controls uθ∗(x) that317

are the maximizers of the Q-function. This is a natural analogue of the argmax318

over controls for discrete/finite control spaces. Again we should think of319

having a deep network that parametrizes the deterministic controller and fitting320

https://arxiv.org/abs/2102.09225
https://arxiv.org/abs/2102.09225
https://arxiv.org/abs/2102.09225

12

its parameters θ using stochastic gradient descent on (9.10)321

θk+1 = θk + η∇θ qφ(x
ω, uθk(xω))

= θk + η (∇u qφ(x
ω, u)) (∇θ uθk(xω))

(9.11)

where ω is the index of the datum in the dataset D. The equality was obtained322

by applying the chain rule. This result is called the “deterministic policy323

gradient” and we should think of it as the limit of the policy gradient for a324

stochastic controller as the stochasticity goes to zero. Also notice that the term325

∇u qφ(x
ω, u)

is the gradient of the output of the Q-function qφ : X × U 7→ R with respect326

to its second input u. Such gradients can also be easily computed using327

backpropagation in PyTorch. It is different than the gradient of the output with328

respect to its weights329

∇φ qφ(x
ω, u).

On-policy deterministic actor-critic Let us now construct an analogue of330

the policy gradient method for the case of a deterministic controller. The331

algorithm would proceed as follows. We initialize weights of a Q-function φ0
332

and weights of the deterministic controller θ0.333

1. At the kth iteration, we collect a dataset from the robot using the334

latest controller uθk . Let this dataset be Dk that consists of tuples335

(x, u, x′, u′).336

2. Fit a Q-function qθ
k

to this dataset by minimizing the temporal differ-337

ence error338

φk+1 = argmin
φ

∑
(x,u,x′,u′)∈Dk

(
qφ(x, u)− r(x, u)− γ

(
1− 1{x′ is terminal}

)
qφ′(x′, u′)

)2
.

(9.12)
Notice an important difference in the expression above, instead of using339

maxu in the target, we are using the control that the current controller,340

namely uθk has taken. This is because we want to evaluate the controller341

uθk and simply parameterize the Q-function using weights φk+1. More342

precisely, we hope that we have343

qφk+1(x, uθk(x)) ≈ max
u

qθ
k

(x, u).

3. We can now update the controller using this Q-function:344

θk+1 = θk + η∇θ qφk+1(xω, uθk(xω)) (9.13)

This algorithm is called “on-policy SARSA” because at each iteration we draw345

fresh data Dk from the environment; this is the direct analogue of actor-critic346

methods that we studied in the previous chapter for deterministic controllers.

 SARSA is an old algorithm in RL
that is the tabular version of what we
did here. It stands for
state-action-reward-state-action . . .

347

Off-policy deterministic actor-critic methods We can also run the above348

algorithm using data from an exploratory controller. The only difference is349

13

that the we now do not throw away the data Dk from older iterations350

D = D1 ∪ · · · ∪Dk

and therefore have to change (9.12) to be351

φk+1 = argmin
φ

∑
(x,u,x′,u′)∈D

qφ(x, u)− r(x, u)− γ
(
1− 1{x′ is terminal}

)
qφ′(x′, uθk(x′)︸ ︷︷ ︸

notice the difference

)

2

.

(9.14)
Effectively, we are fitting the optimal Q-function using the data D but since352

we can no longer take the maximum over controls directly, we plug in the353

controller in the computation of the target. This is natural; we think of the354

controller as the one that maximizes the Q-function when we update (9.13).355

When used with deep networks, this is called the “deep deterministic policy356

gradient” algorithm, it is popular by the name DDPG.357

	Q-Learning
	Tabular Q-Learning
	How to perform exploration in Q-Learning

	Function approximation (Deep Q Networks)
	Embellishments to Q-Learning

	Q-Learning for continuous control spaces

